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Abstract 
We study in this paper the phase behaviour of a system of particles interacting via the isotropic Yukawa and nematic Mayer-Saupe 
interactions. We perform a similar study as in [A. Oukouiss, A. Chourak, and L. Zealouk, AIP Conference Proceedings 2345, 
020033 (2021)] but for the nematic solid phase. We have developed the calculation of free energy for this phase. We have found 
that the topology of the phase diagram depends sensitively on the relative strengths of the isotropic and nematic interactions. 
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Introduction 
Liquid crystals are an interesting class of soft-matter materials 
with a broad spectrum of applications. These range from the 
more traditional ones in displays technology [1] over 
biosensors [2, 3] and tribological applications [4] to photonic [5] 
and organic electronic devices [6].  
In view of the diversity of applications for liquid - crystalline 
materials a deeper theoretical understanding of their properties 
is a necessary prerequisite. As a first step in such a venture the 
nature of various phase transitions in liquid crystals needs to 
be elucidated. In the context of this work the isotropic-nematic 
(IN) phase transition is of particular relevance. There are three 
distinct types of liquid crystals: thermotropic, lyotropic and 
polymeric. The most widely used liquid crystals, and 
extensively studied are thermotropic liquid crystals [7],  
Systems which exhibit transition to a nematic phase have 
already been examined by many authors [8-24], but all these 
authors do not calculate exactly the free energy of the solid 
phase in their theories.  
In our early extensive study of the phase behaviour of the 
Heisenberg model [25, 26] we have generalized the van der 
Waals (vdW) theory for anisotropic interactions to study the 
phase behaviour of a system of particles with magnetic 
exchange interactions. By using this vdW theory we have 
developed the calculation of free energy in a nematic fluid 
phase. We have used the nematic Maier-Saupe interaction as 
anisotropic interaction and the inverse power interaction as 
isotropic interaction [27, 28]. The stability of the nematic fluid 
has been recently studied by us [29].  
In the present investigation we perform a similar study as in 
[29] but for the nematic solid phase. The isotropic interaction is 
represented here by the Yukawa interaction. 
This paper is organized as follows. In sec.2 we introduce our 
model for the anisotropic potential and calculate the free 
energy for nematic solid. The phase diagrams for nematic 
solid are discussed in sec.3. Our conclusions are gathered in 
the final sec.4. 

Extended van der Waals theory for anisotropic solids 
We consider a system of N identical spherical molecules 
whose translational degrees of freedom can be described in 
terms of the position r of the centre of mass of the molecule, 
while its orientational degrees of freedom will be described in 
terms of classical spin variable s, with 2 1s = . This spin 
variable can be viewed as defining the orientation of some 
internal property of the molecules, 1 2 1 2V(r ,r ,s .s ) , will be taken 
to be of the form [29]: 
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Our final reduced vdW free energy, 1/f f ε= , can thus be 
written as [29]: 
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with cpρ is the close packing density. For a solid phase, 
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Where the sum runs overs the lattice sites, /  = 1j jr xσ > , of a 

periodic lattice without defects, jr  being the distance of site j 
to the site at the origin.  
For our potentials, we have 
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For a crystal of close-packing density cpρ and Madelung 

constant 
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With 1jx x≥ and 1x  the reduced nearest neighbour distance 

( 3
1/ )cp xρ ρ= . 

 
The first term of (2) represent the ideal gaz contribution from 
the translational degrees of freedom. The second term 
represents the free-volume entropy due to the hard-spheres 
repulsions. The third term represents the mean field energy of 
the isotropic attraction. The last two terms represent the 
contribution of the angular degrees of freedom. 
 
Phase Diagrams for Solid Phase  
Below we will use the packing fraction 3( )

6
πη ρσ=  as the 

reduced density variable. The two-phase equilibrium 
conditions can then be written 
  

1 1 2 2( , ) ( , ),P t P tρ ρ=   (6) 
 

1 1 2 2( , ) ( , ),t tµ ρ µ ρ=  (7) 
 
Where the indexes 1 et 2 refer, respectively, to phases 1 
(isotropic solid) and 2 (nematic solid).The stable lattice 
structure (solid phase) is seen to be a compact lattice such as 
face-centred-cubic or hexagonal close packed. 
In this paper we take this lattice structure to be of the 
hexagonal close packed (HCP) type, because, exact computer 
simulations and theoretical work on mono-disperse colloidal 
hard spheres indicate that the stable crystal structure is fcc or 
hcp [33, 34]. 
We will consider here the competition between two types of 
phases: the isotropic solid (IS) phase (phase 1) without 
orientational order ( S =0), and the nematic solid (NS) phase 
(phase 2) for which the spin variables are, on average, aligned 
along some director ( 0S ≠ ). The reduced free energy of our 
system is given now by Eq. (2) where 
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The resulting solid-solid transitions are then isostructural hcp-
hcp transitions. The phase diagram of the solid phase depends 
explicitly on the three parameters{ }1 2, ,k kγ . In the following 
we will consider the long-ranged isotropic interactions 

1( 6)k = and long-ranged nematic interactions 2( 6)k = . 
Depending on the value of these parameters, two topologically 
distinct phase diagrams are considered (see Fig.1). For 
0 0.614γ< <  all phase diagrams have an isotropic expanded 
solid (IES)-isotropic condensed solid (ICS) and an IS-NS 
transitions (see Fig.1.a). For 0.614γ > only the IS-NS 
transitions survive (see Fig.1.b). 
 

 
 

Fig 1: Phase diagram for solid phase. (a) The open square marks the 
solid-solid critical point. (The case shown corresponds to 1 2 6k k= =  
and 0.4γ = ). (b) The critical point has disappeared so that there are 

only two phases. (The case shown corresponds to 1 2 6k k= = and 
0.7γ = . The triple point at which the three phases NS, ICS and IES 

coexist disappears for 0.614γ =  
 
Conclusion 
In summary, we have presented a detailed analysis of the 
phase behaviour of hard sphere Maier-Saupe spin systemes, 
with the aid of the Van der Waals theory. According to this 
theory this system undergoes a first-order isotropic solid-
nematic solid transition. We have found that the phase 
diagrams for solid phase do depend not only on the relative 
strength of the nematic and isotropic interactions but also on 
the range of these interactions. We have considered here the 
long-ranged isotropic interactions ( 1 6k = )-long-ranged nematic 

interactions 2 ( 6)k = case. We have investigated whether the 
presence of Yukawa interaction instead the inverse power 
interaction can impose the thermodynamic stability of the 
nematic solid phase. 
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