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Abstract

Studying the dynamics of semiconductor lasers (SLs) is crucial for advancing a wide range of optical
technologies. SLs exhibit rich dynamical phenomena, and these behaviors can be harnessed for many
novel applications. The chaotic behavior dynamics of SLs with optoelectronic feedback (OEFB) have
been studied theoretically. After a series of mathematical operations, they were converted into
dimensionless equations. Further, after testing these equations analytically. The results show the SL
model always has one internal equilibrium point £°, if the parameter values (x, k) take positive values
and until after adding the feed-delayed effect to the above model. While it was observed that the point
loses its stability when the value of the feed delay takes a positive (7, > 0), where the solution paths of

X, U, and w take a periodic form near ¥°. Further, the generalized system may undergo a Hopf bifurcation
about T

Keywords: BSLs, OEFB, dynamics, equilibrium points, Hopf.

Introduction

Studying the behavior and dynamics of a laser system through rate equations is crucial for
several reasons to understand laser dynamics. Rate equations help in understanding how
populations of various energy levels change over time under the influence of pumping and
laser radiation. This understanding is essential for optimizing laser performance and stability.
By solving rate equations for laser behavior, researchers can predict the transient and steady-
state behavior of lasers. This includes phenomena like threshold behavior, relaxation
oscillations, and the evolution of photon number in the laser cavity [ 2, Rate equations
provide insights into the minimum pumping rate required to achieve population inversion,
which is necessary for laser action. This helps in designing lasers that are more efficient and
effective for various applications [l The equations can be used to determine the optimal
output coupling for maximizing the output power of a laser. This is particularly important for
applications requiring high-intensity laser beams 1.

Studying the stability and bifurcation of a laser system helps us to understand stability and
helps predict how a laser will respond to changes in parameters such as pump power, cavity
losses, and external feedback. This is essential for designing stable laser systems that perform
reliably under various conditions. By analyzing bifurcations, researchers can identify critical
points where the laser's behavior changes dramatically > 8. This knowledge allows for the
optimization of laser parameters to achieve desired performance, such as higher output power
or specific wavelength emission. Stability analysis helps identify and avoid undesirable
behaviors like chaos or mode hopping, which can degrade laser performance [ . By
understanding these dynamics, engineers can design control strategies to mitigate such effects.
Rate equations provide a framework for developing control mechanisms to stabilize lasers and
maintain their operation within desired regimes. This is particularly important for applications
requiring precise and stable laser output 1.

Theoretical model

From the physical model of two-level atoms in SLs, the differential equation for the carrier
density N, which is equivalent to the population inversion in common lasers.
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The interactions between photon density S and carrier density
N can be articulated by the conventional single-mode SL rate
equations, suitably adjusted to incorporate the ac-coupled
feedback loop [29:

$=[gN—N)—7y.]s +ﬁ
N ={L+f(I)}/eV —y. N — g(N — Nt )S ()

[ = ¥l + K S where g the differential gain, N(t) the carrier

density at transparency, Nth the carrier density at threshold,
and the analysis of the fundamental dynamics of instability
and chaos in nonlinear systems could be conducted solely
with deterministic terms, without statistical noise. Noise is
fundamentally regarded as a distinct phenomenon from
chaotic oscillations, provided it remains minimal.

where 1 is the high-pass filtered feedback current (before the
nonlinear amplifier), f (I) = AI/(1+s'l) is the feedback
amplifier function, lo is the bias current, e the electron charge,
V is the active layer volume, yo and yc are the photon
damping and population relaxation rate, respectively, yf is the
cutoff frequency and k is a coefficient proportional to the
photo detector responsivity.

In contrast to optical feedback, optoelectronic feedback is
dependable and resilient due to the system's insensitivity to
optical phase fluctuations. Consequently, the phase dynamics
of the optical field can be disregarded. A comprehensive
physical model of the system must incorporate a series of
low-pass frequency filters resulting from the photodiode's
limited bandwidth, the electrical connections to the laser,
parasitic capacitances, and other adverse electronic effects [,
For numerical and analytical purposes, it is useful to rewrite
Egs. (1) in dimensionless form. To this end, we introduce the
new variables: x = (g/yc) S, y = g/yo (N-Nt), w = (g/kyc) I-x,
and the time scale t' = yot. The rate equations then become as
following:

The first rate equation is:

¥ =x(y— 1) + vy,

oo - L 2
y=v (6_ ytea 1+8(w+x) l}")), ( )
w= —€ (w+x).

where &- is the bias current and € is the feedback strength.

These are rate equations of SL in dimensionless form in order
to compute and for numerical and analytical purposes.

These equations representing the nonlinear dynamical system
which produced HC in SL with OEFB. The first equation
represents the photon density or the intensity for output laser
ray, the second equation represents the population inversion,
while the third equation represents the feedback which is
necessary to produce chaos this feedback consist from the
intensity of laser output and the current bias.

Interior Equilibrium of the Model (2)

In this section, we investigate the existence of the non-
boundary equilibrium point of the system (2). To do that the
following equations must be solve:

x(y—1) +¥y =0,
(5 . w+x ) ~ 0
T\ Y al-l—é'(w-i—x) ) =0
—€(w+x) = 0.
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For solving the above system when v = 0, €= 0, and
a *+ 0, one can have

x(yv -1 +wy =0,
SD —}1(1 +x) - 0.
w+x = 0.

From first equation, we have

. X
}J’ = = o
X +7

Apply this in second equation gives

]

x2+(1—5n)xn—5n"o“=0.

Hence can have

. —(1-8)+ JA-6)+46~
X =
2

Further third equation gain that
w =—x.

Therefore, we can say the system has the interior equilibrium
poitZ = (x ,y ,—x).

Stability Analysis of the Equilibrium £~ of Model (2)
The main approach in this section is the analysis of nonlinear
dynamical system (2) near the point X", The Jacobian

linearization technique is used to find the local model that is
linear in the state variables x and y.

System (2) at any point (x, y, w) has the next Jacobian
matrix

y—1 ¥+ 0
Tty w1 —
M(x.y,w)= (1+ 6(x+w))’ g (1460 +w)’

—€ 0 —€
This matrix, when (x,y,w) = (x,¥ ,—x ), reduced to

x4+ 0

M =MEZ)=|vya -3y —v(1+x) wa @)
—€ 0 —€

The characteristic equation of M is given by

|M"— 41| =0,

or

(y —1)—A4 x +y 0
ya— vy  —w(1+x)—-41 va |=0.
—€ 0 —€ —A

The last equation gives
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(0,“,1),;{)‘_7(1+x9)_l wa

va— ¥y v | _ 0
0 —€-1 -

—e—al""

—(+y)
which mean that
(6= =2) G +2) + D +1) - (" + Pl - vy ) (=€ =) +eva] =0,

The above equation can be written in the next polynomial
form

A2 +al+bi+c=0, (4)
where,

a=€+v(l1+x)— (v — 1),

b=€v(1+x) ( € +3(1+2)) (" 1) — (& + D) x —wy),
c=€wy (x +¥)—€v(1+x){ —1).

Therefore, matrix M~ has three eigenvalues represented by
the roots of Eq.(7), if the next conditions hold

0<y <1, (5)
A=ab—¢c>=0 6)

Clearly condition (5) gain @ and ¢ are positive. So in present
of conditions (8) and (9), all conditions of Routh-Hurwitz
criterion [ are obtained. Hence, we have the following
theorem.

Theorem (1): The point T is locally asymptotically stably of

the system of equations (2) when the above requirements (5)
and (5) are met.

Delay model of system (2)

In theoretical physics, delay time is often used to describe the
dynamic behavior of systems. Delay time helps in capturing
the transient response of physical systems, allowing a more
accurate representation of how systems evolve over time. In
the presence of a time delay, the model can become unstable
and show more intricate dynamic behaviors, such as Hopf
bifurcation and saddle-node behavior. Specially, the features
of periodic solutions resulting from the Hopf bifurcation hold
great significance 2. In actuality, temporal delays occur in a
wide range of physical processes, including feedback systems,
signal transmission, energy conversion, biological systems,
chemical reactions, economic models, and more. Modeling
real-world processes is helpful because many real-world
processes, such as signal transmission and feedback loops,
inherently involve delays. Incorporating delay time into
models ensures these processes are accurately represented, [*3
141, Stability analysis with delay times is crucial for analyzing
the stability of dynamic systems. Understanding how delays
impact system behavior can help prevent oscillations or
instability. In control systems or control theory, delay times
are factored into the design of controllers to ensure that
systems respond optimally, even with inherent delays [,
Now model (2) is generalized to assume the following form

using the discrete feed delay T,4.

https://www.physicsjournal.in

x=x(y —1) +wy,

W s — Vv Wiﬂ— 7 7

Y _W(g; Y +a1+8{w+x} x})), )
W= —€(w+x(t—14)).

Where T4 is the time delay. It is well established that the

location and number of equilibrium points remain constant
despite time delay. Therefore system (7) still has the interior

steady state solution I .

Stability Analysis of the Equilibrium £~ of Laser Bulk

Model (7)
In the event of a time delay, the stability of model (7) may be

effected. So, in this section, we examine the stability T of
generalized model (7). Due the presence of time delay 7,4

system (7) has a generalized variational matrix that is as
follows:

yv—1 x+x 0
ra ¥

_ —vy —¥(1+x) ————
|l (+ 6(x+w))2 ot (1+r5(x+w))2
— ce Ama 0 —€

For simplicity G M matrix at £~ may be written as
A° B° 0
GM° = co D° E° |,
—eeMd —€

where,
A% =y —1,B% = x% 4, C° = x(a —y°),
DO = (1 + x°) and E° = va

Therefore, the system (7) at T has the next characteristic
equation

A% — 2 B° 0
co D% — A E® =0,
— ee ATd 0 —€e—A

it is equivalent to
B +ar +bl+é+de?a =0, (8)

where

a=e—(A°+ DY),

b =A°D® — (eA° + eD° 4+ B°C?),
¢ = €e(A°D° — BC"),

d = eB°E"C.

First, for ; = 0, GM® and Eq. (8) reduce to M and Eq.
(3) at respectively. Then with the help of theorem (2), still we
have £ as asymptotically stable point of system (7).

Now, when T, has positive value, Eq. (8) may have roots
include positive real parts. In this case Eq. (5) must has roots
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cross the imaginary axis, i.e. it has a pair of pure imaginary
roots.

For check this pair of roots,
A = +ig, (g > 0), exist or not.

If this two values of A exist, then they must satisfy Eq.(8).
Through substituting A = ai in Eq.(8), we derive that

represented by

—c%i — ac? + boi + ¢ + d(cos(oty) —isin(ory)) = 0.

This equation has the next real and imaginary part:

a ~ @t ¢,
cos(oty) = ac®*—¢ ©

d sin(ot,) = bo — a>.
The last equation gives

cos(ot,) = (ac? —¢)/d,
sin(oty) = (bo — 63)/d.

After squaring (9)1 and (9),, we may summing the resulting
equations to obtain

o8+ hyo*+ h,02+hy =0, (10)
where
hy=a?—2b,h, =b* —2acé,andh; = ¢? — d=

Eq.(10) brings us to the subsequent equation after substituting
each o squared with & (i.e. @ = ).

3+ hy% +hyG+hy =0. (11)

Accordance to Descartes' rule of signs, in the event that
hy > 0 and h; < 0 are fulfilled, there is a unique positive
root & satisfying Eqg. (11). Consequently, Fai represents two
imaginary roots of Eq. (8).

Therefore, for different values of T4, system (7) may
establish hopf bifurcation near T°. Let T, = min{t,} at
which a hopf bifurcation appears. In order to establish that,
for T4 = To, we need to prove the next condition, denoted
the transversality condition, is holds

Sing {dﬁeﬂ{rd]

- } = 0. (12)

To achieve that, assume the root of Equation (8) fulfilling
p(tg) =0, is  Alry) = p(ty) +io(ry),  where
o(ty) = gy. Since A is a function of 7, therefore, the
differentiation of Equation (8) with regards to T4, can be
expressed as follows:

[32%2 + 2aA + b — drze 7] % _ dhe—Mta =@

and
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=L T At 1 (13)

(d,il )_1 _ 3A%T+2ai+h
da A

dtg
With (4 = 19, 4 = igy), one can have
342 +2al+b = (b — 30,2) + 2iaa,,

(322 + 2al+ E)ehd = [(E — 3002) + ZE&GO][COS ooty + i sinogtel

aaUZ_— é iy (boy = gos)]

= [(b = 30,?) + 2iday] [ 5

_ acy® —¢ boy — g,
A

i _ 3 = 2 _ =
+i [(E —30,?) (b = %) + 2aa, aa"& C],

and

CEA = II,CEO'U,
further

Tg .To
_— = —1—.
A ay

Then we have

Re|— Arg _Ta

da ]‘1
dty

32 +2al+b
= Re|—— e
di

Ta=Tp A=igg

32 +2ar+b h
dA et
=igg

1 [, (boo —0o®) . @sp’—¢
_ _ 2
= _&00 [(b 3ay ) pi + 2aog, 7

= % [(b —30¢2)(b — 0q?) + 2a(acy® — &)]

| =

== [300* + 2(@® — 2b)ay? + b? — 2a¢]

=y

1 _ _
= E [30’04 + zhlﬂ—oz + hz]

1 _
:ﬁh(aoz)-

Where, a a
h(ﬂﬂz) = 3(]—{34’ + zhlﬂgz + hz.

Let » = ng = 0, then one can show that from complex
analysis

-1
sing [M dA(tq )] = sing [f_l(x)]

-1
= sing Re [
dtg :|Td=ro g dtg

Td=Tg
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Clear we have h'(x) = 6x + 2h; > 0. So that in [0, o],

E(}f)is monotonously increases.
Furthermore, with the condition

b% > 2a e, (19

Oncanget h(0) = 0,and h(3) > 0 forg > 0.
Consequently, the transversal condition (13) is satisfy if
condition (14)is met.

Theorem (2): Assume that the condition (14) holds, then when
T4 € [0; Ty) all roots of equation (8) have negative real parts,

and when T 4= Ty equation (8) has a pair of purely imaginary
roots +ia while all other roots have negative real parts.

Numerical Simulations

Numerical simulations are offered in this section to back up
our analytical findings. These simulations also reveal the
system's fascinating, complicated behavior. For a hypothetical
collection of data, numerical simulations are run using the
Matlab software.

Table 1: Parameters used in our numerical simulation of laser bulk,

[7.91.
Parameters Value
s 0.01
O 1.0058011
o 1.007
) 0.2
e 5e-4

First, in order to investigate the impact of varying parameter
values (such as w and €) on the dynamical behavior of the
model of laser bulk (2), the following results are observed.
Time series analysis is applied to the dynamical behavior of
the laser bulk model physically, where it typically represents
the evolution of measurable quantities like the number of
photons of the emitted light, charge carriers, and phase of the
bias current. These variables evolve over time according to
nonlinear differential equations, often exhibiting complex
behaviors such as relaxation oscillations, period doubling, and
chaos.

Figure (1), with the data set in table (1), shows that the
trajectories of the laser bulk model (2) converge to interior
equilibrium " = (0.1032,0.9117,—0.1032). Further, the

time series of the behaviors of x, ¥ and w show that the
conditions (5) and (6) hold where, y* = 0.9117 < 1, and
A= 104e~% > 0. Moreover, the numerical solution gives that
the eigenvalues of the Jacobian matrix GM° are
Ay =—0.0075, A, = —0.0003 + 0.0002i and
A3 = —0.0003 — 0.0002i. Then from theorem (1) the
dynamic of model (2) is locally asymptotically stabile near

https://www.physicsjournal.in

T, The stable behavior of both y and w is due to the
statistical change in the number of electrons in the beam,
while the variable behavior of x is due to the initial turn-on
processes that appear during the first pulse and then tend
towards stability. Studying the turn-on behavior in lasers is
essential for both fundamental understanding and practical
applications in photonics, optoelectronics, and high-speed
communication systems. The turn-on delay time between
applying current and the onset of lasing is critical in pulsed
and modulated laser systems. It affects data transmission
rates, especially in optical communication where turn-on
behavior precision matters.

On the other hand, to show the effect of time delay of feed
(T4) on the switches, the stability of laser bulk model (2). The
numerical solutions of the laser bulk model (7) for parameter
values as given in table (1) with T; = 0 are plotted in the

next figures. In Fig.(2) and Fig. (3), with T4_70 and other

parameters as given in table (1), the time series and phase
portrait of the model are plotted, respectively. With these
parameter values equation (10) takes the form

0% + 0.008140* +0.00753¢ 302 — 0.00137¢ 1% = 0,
hence, we have the unique positive root ¢ = 0.00182e~%.
Therefore Eqg. (8) has the two pure imaginary roots
o = F0.00182e4. Furthermore, the transversality condition
(12) holds where the condition (14) holds as
b? =8.39160849¢~ 7> 2a ¢ = 8.65053994¢ 8
Therefore, due to theorem (2) system (7) undergoes a Hopf-
bifurcation, and a periodic solution occurs around T as
depicted in Figs. (2) and (3).

Also, the effect of T4 with increasing the value of bias
current 8- the dynamic of model (2) broches to a limit cycle

oscillation near the interior equilibrium point £~ as shown in
Figs.(4), (5) and (6). The sharp peaks indicate the unique
property of optoelectronic feedback that distinguishes it from
other cases. The effect of the delay time on the overall
behavior is also shown in the delay time of the first pulse in
Fig. (6), where the delay time directly affects the timing of the
first pulse and subsequent pulses. For example, in systems
with sharp optoelectronic feedback peaks, the delay
determines when the first pulse emerges and how the pulse
train evolves.

Figures (7), (8), (9), and (10) exhibit a variety of behaviors,
ranging from periodic to quasi-periodic, all the way to
chaotic. This variation in behavior is primarily due to the
delay time and its effect on the phase. The delayed time effect
in laser dynamics, particularly in systems with optoelectronic
feedback, plays a pivotal role in shaping the behavior of the
laser output. Where the feedback loop introduces a temporal
lag that can dramatically influence the laser's behavior.
Induced oscillations and chaos delay can destabilize steady-
state laser output, leading to periodic oscillations or even
chaotic behavior. This is especially prominent in
semiconductor lasers (6,
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Fig 1: The time series for the laser bulk model (2) with for data in Table (1).
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Fig 2: The time series for the laser bulk model (7) with data in Table 1 and 7 4_70.
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Fig 3: Phase portrait for the laser bulk model (7) with data in Table 1 and 7; = 70.
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Fig 4: The time series for the laser bulk model (7) with data in Table 1 with §: = 1.8058011 and 7,_70.
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Fig 6: The time series for the laser bulk model (7) with data in Table 1 with §: = 1.6 and 7;_70.

~291~


https://www.physicsjournal.in/

International Journal of Physics and Applications https://www.physicsjournal.in

-058
-059
-06
3 -061

-0.62

-0.63

y 04

Fig 8: Phase portrait for the laser bulk model (7) with data in Table 1 with §: = 1.6 and 1,;_30.
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Fig 9: Phase portrait for the laser bulk model (7) with data in Table 1 with §: = 1.6 and 7,;,_20.
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Fig 10: Phase portrait for the laser bulk model (7) with data in Table 1 with §: = 1.6 and 74_15.

Conclusion
A theoretical study has been done on the chaotic behavior
dynamics of SLs with OEFB. In this investigation, the
following conclusions can be drawn. Mathematical model was
proposed for the work of the SL system, which consists of
three equations that were chosen from a mathematical SL
model. Also, after a series of mathematical operations, these
equations were converted into dimensionless equations. On
the analytical side, the following was observed:

e The bulk laser model always has one internal equilibrium
point T, if the parameter values (7w, k ) take positive
values.

e If the conditions ¢ <u < 1,A=ab —c >0 are
met, the dynamic system of the model is stable at the
point Z.

e  After adding the feed delayed effect to the above model
and obtaining a more general model, we note that the
generalized model also still has one internal equilibrium
point X .

e It was observed that the point loses its stability when the
value of the feed delay take a positive (T, = 0), where
the solution paths of X, u, and w take a periodic forms

near T . Further the generalized system may undergoes a

Hopf- bifurcation about ", Moreover, with changing the
value of the feed delay, the system solutions may

approach to a limit cycle around the point 3.
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