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Abstract 
Studying the dynamics of semiconductor lasers (SLs) is crucial for advancing a wide range of optical 
technologies. SLs exhibit rich dynamical phenomena, and these behaviors can be harnessed for many 
novel applications. The chaotic behavior dynamics of SLs with optoelectronic feedback (OEFB) have 
been studied theoretically. After a series of mathematical operations, they were converted into 
dimensionless equations. Further, after testing these equations analytically. The results show the SL 
model always has one internal equilibrium point , if the parameter values (ɤ, k) take positive values 
and until after adding the feed-delayed effect to the above model. While it was observed that the point 
loses its stability when the value of the feed delay takes a positive ( , where the solution paths of 
x, u, and w take a periodic form near . Further, the generalized system may undergo a Hopf bifurcation 

about . 
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Introduction  
Studying the behavior and dynamics of a laser system through rate equations is crucial for 
several reasons to understand laser dynamics. Rate equations help in understanding how 
populations of various energy levels change over time under the influence of pumping and 
laser radiation. This understanding is essential for optimizing laser performance and stability. 
By solving rate equations for laser behavior, researchers can predict the transient and steady-
state behavior of lasers. This includes phenomena like threshold behavior, relaxation 
oscillations, and the evolution of photon number in the laser cavity [1, 2]. Rate equations 
provide insights into the minimum pumping rate required to achieve population inversion, 
which is necessary for laser action. This helps in designing lasers that are more efficient and 
effective for various applications [3]. The equations can be used to determine the optimal 
output coupling for maximizing the output power of a laser. This is particularly important for 
applications requiring high-intensity laser beams [4]. 
Studying the stability and bifurcation of a laser system helps us to understand stability and 
helps predict how a laser will respond to changes in parameters such as pump power, cavity 
losses, and external feedback. This is essential for designing stable laser systems that perform 
reliably under various conditions. By analyzing bifurcations, researchers can identify critical 
points where the laser's behavior changes dramatically [5, 6]. This knowledge allows for the 
optimization of laser parameters to achieve desired performance, such as higher output power 
or specific wavelength emission. Stability analysis helps identify and avoid undesirable 
behaviors like chaos or mode hopping, which can degrade laser performance [7, 8]. By 
understanding these dynamics, engineers can design control strategies to mitigate such effects. 
Rate equations provide a framework for developing control mechanisms to stabilize lasers and 
maintain their operation within desired regimes. This is particularly important for applications 
requiring precise and stable laser output [9]. 
 
Theoretical model 
From the physical model of two-level atoms in SLs, the differential equation for the carrier 
density N, which is equivalent to the population inversion in common lasers.  
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The interactions between photon density S and carrier density 
N can be articulated by the conventional single-mode SL rate 
equations, suitably adjusted to incorporate the ac-coupled 
feedback loop [10]: 
 

 
 
   (1)  
 

 where g the differential gain, N(t) the carrier 
density at transparency, Nth the carrier density at threshold, 
and the analysis of the fundamental dynamics of instability 
and chaos in nonlinear systems could be conducted solely 
with deterministic terms, without statistical noise. Noise is 
fundamentally regarded as a distinct phenomenon from 
chaotic oscillations, provided it remains minimal. 
where I is the high-pass filtered feedback current (before the 
nonlinear amplifier), f (I) ≡ AI/(1+s'I) is the feedback 
amplifier function, Io is the bias current, e the electron charge, 
V is the active layer volume, γo and γc are the photon 
damping and population relaxation rate, respectively, γf is the 
cutoff frequency and k is a coefficient proportional to the 
photo detector responsivity. 
In contrast to optical feedback, optoelectronic feedback is 
dependable and resilient due to the system's insensitivity to 
optical phase fluctuations. Consequently, the phase dynamics 
of the optical field can be disregarded. A comprehensive 
physical model of the system must incorporate a series of 
low-pass frequency filters resulting from the photodiode's 
limited bandwidth, the electrical connections to the laser, 
parasitic capacitances, and other adverse electronic effects [11]. 
For numerical and analytical purposes, it is useful to rewrite 
Eqs. (1) in dimensionless form. To this end, we introduce the 
new variables: x = (g/γc) S, y = g/γo (N-Nt), w = (g/kγc) I-x, 
and the time scale t` = γot. The rate equations then become as 
following: 
The first rate equation is:  
 

  (2) 

 
where  is the bias current and  is the feedback strength. 
These are rate equations of SL in dimensionless form in order 
to compute and for numerical and analytical purposes. 
These equations representing the nonlinear dynamical system 
which produced HC in SL with OEFB. The first equation 
represents the photon density or the intensity for output laser 
ray, the second equation represents the population inversion, 
while the third equation represents the feedback which is 
necessary to produce chaos this feedback consist from the 
intensity of laser output and the current bias. 
 
Interior Equilibrium of the Model (2) 
In this section, we investigate the existence of the non-
boundary equilibrium point of the system (2). To do that the 
following equations must be solve:  
 

 

For solving the above system when  and 
, one can have 

 

 
 
From first equation, we have 
 

 
 
Apply this in second equation gives 
 

 
 
Hence can have 
 

 
 
Further third equation gain that  
 

 
 
Therefore, we can say the system has the interior equilibrium 
point ). 
 
Stability Analysis of the Equilibrium  of Model (2) 
The main approach in this section is the analysis of nonlinear 
dynamical system (2) near the point . The Jacobian 
linearization technique is used to find the local model that is 
linear in the state variables x and y. 
System (2) at any point  has the next Jacobian 
matrix 
 

 
 
This matrix, when ), reduced to  
 

  (3) 

 
The characteristic equation of  is given by  
 

 
 
or  
 

 
 
The last equation gives 
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which mean that 
 

 
 
The above equation can be written in the next polynomial 
form 
 

 (4) 
 
where,  
 

 
 

 
 

 
 
Therefore, matrix  has three eigenvalues represented by 
the roots of Eq.(7), if the next conditions hold 
 

  (5) 
 

  (6)  
 
Clearly condition (5) gain  and  are positive. So in present 
of conditions (8) and (9), all conditions of Routh-Hurwitz 
criterion [8] are obtained. Hence, we have the following 
theorem. 
 
Theorem (1): The point  is locally asymptotically stably of 
the system of equations (2) when the above requirements (5) 
and (5) are met.  
 
Delay model of system (2) 
In theoretical physics, delay time is often used to describe the 
dynamic behavior of systems. Delay time helps in capturing 
the transient response of physical systems, allowing a more 
accurate representation of how systems evolve over time. In 
the presence of a time delay, the model can become unstable 
and show more intricate dynamic behaviors, such as Hopf 
bifurcation and saddle-node behavior. Specially, the features 
of periodic solutions resulting from the Hopf bifurcation hold 
great significance [12]. In actuality, temporal delays occur in a 
wide range of physical processes, including feedback systems, 
signal transmission, energy conversion, biological systems, 
chemical reactions, economic models, and more. Modeling 
real-world processes is helpful because many real-world 
processes, such as signal transmission and feedback loops, 
inherently involve delays. Incorporating delay time into 
models ensures these processes are accurately represented, [13, 

14]. Stability analysis with delay times is crucial for analyzing 
the stability of dynamic systems. Understanding how delays 
impact system behavior can help prevent oscillations or 
instability. In control systems or control theory, delay times 
are factored into the design of controllers to ensure that 
systems respond optimally, even with inherent delays [15]. 
Now model (2) is generalized to assume the following form 
using the discrete feed delay . 

  (7) 

 
Where  is the time delay.  It is well established that the 
location and number of equilibrium points remain constant 
despite time delay. Therefore system (7) still has the interior 
steady state solution . 
  
Stability Analysis of the Equilibrium  of Laser Bulk 
Model (7) 
In the event of a time delay, the stability of model (7) may be 
effected. So, in this section, we examine the stability  of 
generalized model (7). Due the presence of time delay  
system (7) has a generalized variational matrix that is as 
follows: 
 

 
 
For simplicity  matrix at  may be written as 
 

 
 
where, 

   
 and . 

 
Therefore, the system (7) at  has the next characteristic 
equation 
 

 
 
it is equivalent to 
 

 (8) 
 
where 

 
 

 
 

 
First, for ,  and Eq. (8) reduce to  and Eq. 
(3) at respectively. Then with the help of theorem (2), still we 
have  as asymptotically stable point of system (7).  
Now, when  has positive value, Eq. (8) may have roots 
include positive real parts. In this case Eq. (5) must has roots 
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cross the imaginary axis, i.e. it has a pair of pure imaginary 
roots. 
For check this pair of roots, represented by 

, exist or not.  
If this two values of  exist, then they must satisfy Eq.(8). 
Through substituting   in Eq.(8), we derive that 
 

 
 
 
This equation has the next real and imaginary part: 
 

 (9) 

 
The last equation gives 
 

 
 
After squaring (9)1 and (9)2, we may summing the resulting 
equations to obtain 
 

,  (10) 
 
where 

 
, , and . 

 
Eq.(10) brings us to the subsequent equation after substituting 
each σ squared with  (i.e. ).  
 

  (11) 
 
Accordance to Descartes' rule of signs, in the event that 

 and  are fulfilled, there is a unique positive 
root  satisfying Eq. (11). Consequently,  represents two 
imaginary roots of Eq. (8).  
Therefore, for different values of , system (7) may 
establish hopf bifurcation near . Let  at 
which a hopf bifurcation appears. In order to establish that, 
for , we need to prove the next condition, denoted 
the transversality condition, is holds  
 

  (12) 

 
To achieve that, assume the root of Equation (8) fulfilling 

 is , where 
 Since  is a function of , therefore, the 

differentiation of Equation (8) with regards to , can be 
expressed as follows:  

 

 
and  
 

  (13) 

 
With ( ,  , one can have 
 

 
 

 
 

 
 

 
 

 
 
and 
 

 
 
further 
 

 
 
Then we have 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
Where, 

 
 
Let  then one can show that from complex 
analysis 
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Clear we have . So that in , 

is monotonously increases. 
Furthermore, with the condition 
 

 (14) 
 
On can get  and  for   
Consequently, the transversal condition (13) is satisfy if 
condition (14)is met. 
Theorem (2): Assume that the condition (14) holds, then when 

 [0; ) all roots of equation (8) have negative real parts, 
and when =  equation (8) has a pair of purely imaginary 
roots  while all other roots have negative real parts. 
 
Numerical Simulations 
Numerical simulations are offered in this section to back up 
our analytical findings. These simulations also reveal the 
system's fascinating, complicated behavior. For a hypothetical 
collection of data, numerical simulations are run using the 
Matlab software. 
 
 
Table 1: Parameters used in our numerical simulation of laser bulk, 

[7, 9]. 
 

Parameters Value 
 

0.01 
 

1.0058011 
 

1.007 
 

0.2 
 

5e-4 
 
First, in order to investigate the impact of varying parameter 
values (such as  and ) on the dynamical behavior of the 
model of laser bulk (2), the following results are observed. 
Time series analysis is applied to the dynamical behavior of 
the laser bulk model physically, where it typically represents 
the evolution of measurable quantities like the number of 
photons of the emitted light, charge carriers, and phase of the 
bias current. These variables evolve over time according to 
nonlinear differential equations, often exhibiting complex 
behaviors such as relaxation oscillations, period doubling, and 
chaos. 
Figure (1), with the data set in table (1), shows that the 
trajectories of the laser bulk model (2) converge to interior 
equilibrium . Further, the 
time series of the behaviors of ,  and  show that the 
conditions (5) and (6) hold where,  and 

 Moreover, the numerical solution gives that 
the eigenvalues of the Jacobian matrix  are 

,  and 
. Then from theorem (1) the 

dynamic of model (2) is locally asymptotically stabile near

. The stable behavior of both y and w is due to the 
statistical change in the number of electrons in the beam, 
while the variable behavior of x is due to the initial turn-on 
processes that appear during the first pulse and then tend 
towards stability. Studying the turn-on behavior in lasers is 
essential for both fundamental understanding and practical 
applications in photonics, optoelectronics, and high-speed 
communication systems. The turn-on delay time between 
applying current and the onset of lasing is critical in pulsed 
and modulated laser systems. It affects data transmission 
rates, especially in optical communication where turn-on 
behavior precision matters. 
On the other hand, to show the effect of time delay of feed 
( ) on the switches, the stability of laser bulk model (2). The 
numerical solutions of the laser bulk model (7) for parameter 
values as given in table (1) with  are plotted in the 
next figures. In Fig.(2) and Fig. (3), with  and other 
parameters as given in table (1), the time series and phase 
portrait of the model are plotted, respectively. With these 
parameter values equation (10) takes the form 

, 
hence, we have the unique positive root . 
Therefore Eq. (8) has the two pure imaginary roots 

. Furthermore, the transversality condition 
(12) holds where the condition (14) holds as 

 
Therefore, due to theorem (2) system (7) undergoes a Hopf-
bifurcation, and a periodic solution occurs around  as 
depicted in Figs. (2) and (3). 
 Also, the effect of  with increasing the value of bias 
current  the dynamic of model (2) broches to a limit cycle 

oscillation near the interior equilibrium point  as shown in 
Figs.(4), (5) and (6). The sharp peaks indicate the unique 
property of optoelectronic feedback that distinguishes it from 
other cases. The effect of the delay time on the overall 
behavior is also shown in the delay time of the first pulse in 
Fig. (6), where the delay time directly affects the timing of the 
first pulse and subsequent pulses. For example, in systems 
with sharp optoelectronic feedback peaks, the delay 
determines when the first pulse emerges and how the pulse 
train evolves. 
Figures (7), (8), (9), and (10) exhibit a variety of behaviors, 
ranging from periodic to quasi-periodic, all the way to 
chaotic. This variation in behavior is primarily due to the 
delay time and its effect on the phase. The delayed time effect 
in laser dynamics, particularly in systems with optoelectronic 
feedback, plays a pivotal role in shaping the behavior of the 
laser output. Where the feedback loop introduces a temporal 
lag that can dramatically influence the laser's behavior. 
Induced oscillations and chaos delay can destabilize steady-
state laser output, leading to periodic oscillations or even 
chaotic behavior. This is especially prominent in 
semiconductor lasers [16]. 
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Fig 1: The time series for the laser bulk model (2) with for data in Table (1). 
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Fig 2: The time series for the laser bulk model (7) with data in Table 1 and . 
 

 
 

Fig 3: Phase portrait for the laser bulk model (7) with data in Table 1 and . 
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Fig 4: The time series for the laser bulk model (7) with data in Table 1 with  and . 
 

 
 

Fig 5: Phase portrait for the laser bulk model (7) with data in Table 1 with  and . 
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Fig 6: The time series for the laser bulk model (7) with data in Table 1 with  and . 
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Fig 7: Phase portrait for the laser bulk model (7) with data in Table 1 with  and  
 

 
 

Fig 8: Phase portrait for the laser bulk model (7) with data in Table 1 with  and . 
 

 
 

Fig 9: Phase portrait for the laser bulk model (7) with data in Table 1 with  and . 
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Fig 10: Phase portrait for the laser bulk model (7) with data in Table 1 with  and . 
 

Conclusion 
A theoretical study has been done on the chaotic behavior 
dynamics of SLs with OEFB. In this investigation, the 
following conclusions can be drawn. Mathematical model was 
proposed for the work of the SL system, which consists of 
three equations that were chosen from a mathematical SL 
model. Also, after a series of mathematical operations, these 
equations were converted into dimensionless equations. On 
the analytical side, the following was observed: 
• The bulk laser model always has one internal equilibrium 

point , if the parameter values (  ) take positive 
values. 

• If the conditions  are 
met, the dynamic system of the model is stable at the 
point . 

• After adding the feed delayed effect to the above model 
and obtaining a more general model, we note that the 
generalized model also still has one internal equilibrium 
point . 

• It was observed that the point loses its stability when the 
value of the feed delay take a positive ( ), where 
the solution paths of x, u, and w take a periodic forms 
near . Further the generalized system may undergoes a 
Hopf- bifurcation about , Moreover, with changing the 
value of the feed delay, the system solutions may 
approach to a limit cycle around the point . 
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