

E-ISSN: 2664-7583
P-ISSN: 2664-7575
Impact Factor (RJIF): 8.12
IJOS 2025; 7(2): 254-257
© 2025 IJPA
www.physicsjournal.in
Received: 16-11-2025
Accepted: 20-12-2025

Dr. Varsha Gautam
Guest Faculty, Assistant
Professor, Department of
Physics, Deshbandhu College,
University of Delhi, Delhi, India

Probing elastic and dielectric properties in Liquid Crystals through Molecular Spectroscopy

Varsha Gautam

DOI: <https://doi.org/10.33545/26647575.2025.v7.i2f.225>

Abstract

The electro-optical properties of liquid crystals are determined by the properties of electronic and dielectric. If the properties are suitable for a particular application, the performance of the liquid crystal will be optimal. When spectroscopic techniques are used in conjunction with computational and theoretical modelling to study liquid crystals, it is possible to gain valuable insight into the properties on a molecular scale while gaining an understanding of liquid crystal behaviour on a macroscopic scale. This study presents an overview of the principles and the theories related to elastic and dielectric liquids and examines how vibrational, rotational, and electronic spectroscopy can be used to determine the relationship between the molecular structure and the physical properties of the liquid crystals being studied. Molecular modelling, continuum modelling, and spectroscopy simulation techniques, which are specifically applicable to today's liquid crystal technologies are presented and discussed.

Keywords: Molecular Spectroscopy, theoretical modelling, liquid crystals

Introduction

Liquid Crystals (LC) are a unique state of matter that exhibit both fluidity and long-range mechanical/electrical order ^[1]. They are used in many applications due to their unique mechanical and electrical properties. The dielectric property of LC shows how LC reacts to an external electric field while the elastic property of LC describes how resistant LC are to changes in the molecular alignment structure during their application of force ^[2]. Some of the methods used for studying the dielectric and elastic properties of an LC include infrared (IR), Raman spectroscopy, dielectric spectroscopy and ultraviolet-visible spectroscopy. These studies are made through the use of theoretical models and computational techniques that link each molecular structure to their macroscopic characteristics ^[3]. Theoretical modelling allows us to relate the macroscopic observables from spectroscopic studies of LC with their individual molecular structure ^[4]. Theoretical and computational models of spectroscopic observations link molecular structures to observable macroscopic traits ^[5].

This research explains the criteria that affect elastic and dielectric characteristics of LC through spectroscopy. The properties of elasticity and dielectric response, which are both determined by molecular conformation, alignment & interactions will be evaluated through electronic, rotational and vibrational spectroscopies. The goal is to establish the validity of using molecular spectroscopy insight to connect the relationship between macroscopic characteristics and molecular behaviour. The relationship between dielectric response, elastic constants, molecular orientation and dynamics will also be discussed. This presentation describes a conceptual model for the development of LC with superior electro-optical properties.

Elastic Properties of Liquid Crystal

The elastic behaviour of nematic LCs can often be described using the theory of continuum elasticity. Such deformations can be classified into three modes representing distortions of the direction field - namely splay, twist and bend ^[6]. The elastic constants K_1 , K_2 and K_3 quantify these deformations respectively ^[7]. The elastic constants arise from orientational correlations and anisotropic intermolecular interactions between molecules ^[8]; therefore, the molecular shape, flexibility and anisotropy of interactions influence elastic behaviour, as demonstrated by statistical mechanical theories and molecular simulations.

Corresponding Author:
Dr. Varsha Gautam
Guest Faculty, Assistant
Professor, Department of
Physics, Deshbandhu College,
University of Delhi, Delhi, India

The elastic properties of the LC determine its external forces/fields' influence on phase stability and defect evolution due to the liquid crystal's elastic characteristics' effect on the extent of the liquid crystal's response. The effect of temperature, concentration, and molecular structure on the elastic response also offers insight on how to predict the behaviour of LC materials in display and sensor applications [9]. An understanding of these factors allows for the development of liquid crystal materials with desired mechanical and optical performance through an evaluation of how molecular configurations affect their elastic response. This information can lead to the formulation of liquid crystals that will deform when an electrical stimulus is applied or removed.

Dielectric Properties and Polarization Mechanisms

The origin of LC dielectric properties is in electrical polarization and molecular dipoles. LCs have dielectric constants that are anisotropic and therefore have two dielectric constants: One with an axis parallel to the director of the LC and the other with its axis perpendicular to the director of the LC [10]. Dielectric spectroscopy is used to detect molecular relaxation processes (rotational diffusion and collective reorientation) as a function of frequency-dependent permittivity. Both rotational diffusion and collective reorientation are very sensitive to the order of molecules in the LC and to the elastic constraints acting on those molecules [11]. Temperature, molecular structure and dipole strength affect how the molecules reorient when an applied electric field is present and therefore will also affect the dielectric response of the LC [12].

The effects of orientational correlations and intermolecular interactions on dielectric anisotropy must be understood in order to characterize the switching behaviour of devices such as electro-optical modulators and liquid-crystal displays. Molecular spectroscopy modelling allows the determination of the relative contributions of various chemical species to macroscopic dielectric properties. Knowing how to create liquid crystal materials with defined electro-optical capabilities can be accomplished through this technique [13].

Spectroscopic Techniques Relevant to Elastic and Dielectric Properties

Vibrational Spectroscopy (IR and Raman)

Through the use of IR and Raman spectroscopy, vibrational information including how the molecules stretch, bend and turn can be measured [14]. Each of these three types of vibration has different frequencies and intensities depending on the orientation, amount of order and interactions between adjacent molecules. The amount of alignment of the molecules in a particular direction influences the Raman scattering and infrared absorption for liquid crystals, so that they can be used to determine the degree of anisotropy and phase behaviour in these materials [15]. Examples of elastic deformation that change the distribution of allowable orientations of the molecules, which affects both the intensity of the vibrational bands and the positions of the peaks within the bands, include splaying, twisting and bending [16-17]. Using vibrational spectroscopy with polarization, it is feasible to determine order parameters and detect phase transitions as well as determine how side chains, or substituents, on molecules may affect their flexibility [18]. Computational modelling of the vibrational spectrum for a given molecule using the most appropriate molecular simulation tool (either density functional theory or molecular dynamics) allows one

to correlate those models with the molecular structure of the compound, the intermolecular interaction, and its observable spectroscopic fingerprint. In order to develop liquid crystal materials for specific applications in an efficient manner, an understanding of how vibrations at the molecular level influence the macroscopic elastic and dielectric properties is necessary [19-20].

Dielectric Spectroscopy

Dielectric spectroscopy provides a direct way to evaluate the anisotropic dielectric property and the dynamics of dipolar molecules in the material under test. Using a measurement of the frequency dependent dielectric constant, one can determine how the molecules in a material respond to an oscillating electric field [21]. The technique also reveals molecular motions that may be difficult to study directly, such as mechanism of collective reorientation of dipoles, collective and rotational relaxation and dipole fluctuation. The separation of collective modes of slower molecules and vibrating faster molecules may be performed by matching the dielectric response of the sample at different frequencies. By performing relaxation modelling of the dielectric spectra, one can study the relationships between the structure, alignment and inter-molecular interaction of the molecules of liquid crystals and their macroscopic dielectric behaviour. Consequently, this method provides a means to relate materials behaviours in electro-optical applications, to molecular dynamic properties [22].

Electronic Spectroscopy

In addition to giving information about a molecule's energy levels, UV-visible spectroscopy can be used to see how a molecule's orientation affects how it absorbs light. When molecules are aligned in liquid crystals, the absorption is anisotropic because the phase type and molecular order of the liquid crystal provide the locations and strengths of the spectral bands [23]. Changes in UV-visible spectra can show that there are differences between the way the molecules are conjugated, the amount of polarizability and how the molecules interact with each other. A way to use computational models of excited states with experimental UV-visible spectra to anticipate how macroscopic features, such as dielectric anisotropy, are related to the molecular structure is in order to help researchers establish a direct relationship between the functional behaviour of electro-optical systems and electrical transitions [24].

Theoretical and Computational Molecular spectroscopy

In the analysis of data collected from UV-visible spectroscopy experiments, the researcher can utilize how molecules are arranged in space, to establish the relationship between the amount of light absorbed by individual molecules and the energy levels present within each individual molecule [25]. For example, LCs are able to exhibit an anisotropic nature with regard to the amount of absorption, indicating that an individual type of array will absorb different amounts of light depending upon orientation with respect to the source of the light being utilized to perform the measurement. There are several different reasons why the amount of light absorbed by a given liquid crystal may vary from spectrum to spectrum: (1) changes in the number of conjugated double bonds present in a particular chemical structure; (2) changes in its polarization ability; or (3) how closely separated the molecules are from each other or how they interact with each other. By utilizing both computational models and

experimental UV-visible spectra, scientists are then able to predict how different macroscopic properties, such as dielectric anisotropy, will be affected by a liquid crystal's molecular structure, and subsequently determine how to link the functional properties of electro-optical systems to electrical transitions^[26-28].

Structure-Property Relationships

By the aid of molecular spectroscopy one can look more closely at how a chemical compound's properties influence the physical properties of liquid-crystalline materials^[29]. In general, larger stiff-core molecules or those containing more extensive π -conjugated systems have a stronger resistance to deformation due to the may consist of a more anisotropic structure and/or a greater number of intermolecular-contact points^[30] hence greater elastic constants and greater

orientational order. Permanent dipoles are likely to have a strong longitudinal component, and therefore greater alignment and dielectric response as well as significantly greater influence from an electric field^[31]. Changes to the structure of the molecules (i.e., substitution on the core or length of alkyl chains) will alter the elastic and dielectric behaviour because these will alter the distribution of electrons and thus the polarizability of a given substance.

Spectroscopic data, including changes in vibrations and shifts of electronic spectra due to chemical alterations, give insight into how structures relate to their properties and how this can inform the development of new liquid crystal architectures with enhanced electro-optical qualities by manipulation^[32-33]. Understanding the relationship between properties and structures provides an opportunity to develop new ways to achieve optimal liquid crystal performance.

Table 1: Molecular Spectroscopic techniques^[34-38].

Molecular spectroscopy Technique	Measured Property	Molecular-Level Insight	Macroscopic / Device Relevance	Measured Property
IR Spectroscopy	Vibrational modes (bond stretching, bending)	Molecular orientation, local order, conformational flexibility	Order parameter estimation, phase transition detection	Vibrational modes (bond stretching, bending)
Raman Spectroscopy	Polarized vibrational spectra	Molecular alignment, anisotropy, elastic deformation	Detect splay, twist, bend effects; quantify elastic constants	Polarized vibrational spectra
Dielectric Spectroscopy	Dielectric permittivity (ϵ_{\parallel} , ϵ_{\perp}), relaxation times	Molecular dipole orientation, collective motion	Threshold voltage, switching speed, dielectric anisotropy	Dielectric permittivity (ϵ_{\parallel} , ϵ_{\perp}), relaxation times
UV-Visible / Electronic Spectroscopy	Electronic transitions ($\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$)	Polarizability, excited-state distribution, alignment	Optical anisotropy, correlation with dielectric response	Electronic transitions ($\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$)
Molecular Dynamics & DFT	Elastic constants, dipole interactions, vibrational frequencies	Molecular shape, rigidity, interaction anisotropy	Predict macroscopic elasticity, dielectric anisotropy; guide material design	Elastic constants, dipole interactions, vibrational frequencies

Applications in Liquid Crystal Devices

The elastic and dielectric characteristics of liquid crystal display (LCD) technologies have an important effect upon maximum response time and threshold Voltage and their Stability; when a liquid crystal polymer is subjected to an externally applied Field, it undergoes molecular reorientation at a certain rate depending on its elastic constants. These elastic constants directly relate to how quickly the pixels will switch from one state to another. Therefore, if one can determine the elastic constants of the liquid crystal(s) that one is using, you can predict the maximum response time for a particular liquid crystal(s). Likewise, with respect to dielectric constant, this determines the threshold voltage necessary to achieve molecular reorientation; therefore, the dielectric constant plays a critical role with regard to high resolution and low power devices. Researchers are investigating ways to develop new liquid crystals at a much higher rate by using molecular spectroscopy to predict macroscopic properties based on the molecular structure of the LCs; thus, this technology will allow researchers to develop new materials faster than through traditional experimental trial and error. The information gained through the research of LCs will be used in the development of other types of devices, including: photonic devices; tunable lenses; optical switches; and sensors that require accurate and precise control of electro-optical response and molecular alignment^[39-42].

Challenges and Future Outlook

Although significant progress has been made in modelling the long-range collective effects and dynamics taking place over the range of different length scales, it is still extremely difficult to do so. There is a need for improved theoretical and computational ability to describe how macroscopic activity

relates to molecular-scale interactions and to produce accurate models of dynamic events associated with defect generation, phase transition and molecular reorientation when subjected to the influence of changing environmental parameters. While molecular spectroscopy methods can be used to obtain indirect experimental data concerning these types of events, there is still considerable difficulty in integrating the available experimental data to the theoretical and computational description(s). Future advances are anticipated through the use of high-performance computers and machine learning technology to facilitate the optimisation of liquid crystal design, to provide the capacity to work with much larger data sets, and ultimately, to predict the behaviour of liquid crystal molecules. Through advances in multi-scale modelling and the development of innovative computational-experimental techniques, researchers will be better able to understand the molecular principles involved with elastic, electrical, and optical behaviour. As a result, this work will lead to a better understanding of how to create new types of liquid crystal devices. Also, an understanding of novel liquid crystal molecules with unique functional groups will potentially allow researchers to develop a broader spectrum of potential electro-optical functionalities^[43].

Conclusion

Molecular spectroscopy serves as a robust basis for comprehending and predicting the elastic and dielectric properties of LCs. The design of new liquid crystal materials depends heavily on the use of theoretical/computational models that relate molecular-level spectroscopic signals to macroscopic behaviour; these models allow for examination of the roles of polarizability, dipole moment and molecular structure on dielectric anisotropy, and elastic constant. It is

difficult to directly observe molecular orientation, intermolecular interactions, and the dynamics of these processes through vibrational, electronic and rotational spectroscopies. Utilizing spectroscopic data and Density Functional Theory (DFT) or molecular simulations enables researchers to model potential effects of external stimulation on the performance of materials, as well as optimize the properties needed for electro-optical performance. This type of technology has allowed the development of custom LC devices, including those with specific switching speeds; contrast ratios and stability during operation. Additionally, through the use of molecular spectroscopy, the speed of discovery and the minimization of experimentation by trial-and-error has increased exponentially. Thus, continued expansion of molecular spectroscopy will create the link between both device performance and molecular design, which will ultimately aid in the further development of LC technology in the future.

References

1. de Gennes PG, Prost J. *The physics of liquid crystals*. 2nd ed. Oxford: Oxford University Press; 1993.
2. Yeh P, Gu C. *Optics of liquid crystal displays*. New York: Wiley; 1999.
3. Chandrasekhar S. *Liquid crystals*. 2nd ed. Cambridge: Cambridge University Press; 1992.
4. Collings PJ, Hird M. *Introduction to liquid crystals*. London: Taylor & Francis; 1997.
5. Schermann JP. *Spectroscopy and modeling of biomolecular building blocks*. Amsterdam: Elsevier; 2007.
6. Oseen CW. *The theory of liquid crystals*. *Trans Faraday Soc*. 1933;29(140):883-899.
7. Frank FC. *Liquid crystals: on the theory of liquid crystals*. *Discuss Faraday Soc*. 1958;25:19-28.
8. Allen MP, Tildesley DJ. *Computer simulation of liquids*. Oxford: Oxford University Press; 2017.
9. Yang DK, Wu ST. *Fundamentals of liquid crystal devices*. Chichester: John Wiley & Sons; 2014.
10. Zheng ZG, Li Y, Bisoyi HK, Wang L, Bunning TJ, Li Q. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. *Nature*. 2016;531(7594):352-356.
11. Singh S, Srivastava JK, Singh RK. Polymer dispersed liquid crystals. In: *Liquid crystalline polymers*. Volume 1: structure and chemistry. Cham: Springer; 2016. p. 195-250.
12. Kremer F, Schönhals A, editors. *Broadband dielectric spectroscopy*. Berlin: Springer; 2002.
13. Dong RY. *Nuclear magnetic resonance of liquid crystals*. New York: Springer; 2012.
14. Raman CV, Krishnan KS. A new type of secondary radiation. *Nature*. 1928;121:501-502.
15. Newnham RE. *Properties of materials: anisotropy, symmetry, structure*. Oxford: Oxford University Press; 2004.
16. Athanassopoulou MA, Bates MA, Clark SJ, Crain J, Haase W, Luckhurst GR, et al. *Liquid crystals I*. Vol. 94. Berlin: Springer; 2003.
17. Dingemans TJ, Madsen LA, Zafiropoulos NA, Lin W, Samulski ET. Uniaxial and biaxial nematic liquid crystals. *Phil Trans R Soc A*. 2006;364(1847):2681-2696.
18. Madsen LA, Dingemans TJ, Nakata M, Samulski ET. Thermotropic biaxial nematic liquid crystals. *Phys Rev Lett*. 2004;92(14):145505.
19. Zannoni C. *Molecular modelling of liquid crystals*. Berlin: Springer; 1994.
20. Gautam V, Mishra M, Thapa KB, Kumar J, Singh D, Kumar D. Electronic, optical and spectroscopic properties of N-dialkyl-imidazolium hexafluorophosphate ionic liquid crystal molecules investigated by computational methods. *J Mol Model*. 2023;29(9):274.
21. Kremer F. Dielectric spectroscopy—yesterday, today and tomorrow. *J Non-Cryst Solids*. 2002;305(1-3):1-9.
22. Brundle CR. *Electron spectroscopy*. New Delhi: Mittal Publications; 2002.
23. Mandru A, Mane J, Mandapati R. A review on UV-visible spectroscopy. *J Pharma Insights Res*. 2023;1(2):91-96.
24. Lagerwall ST. Ferroelectric and antiferroelectric liquid crystals. *Ferroelectrics*. 2004;301(1):15-45.
25. Maier JP. Electronic spectroscopy of carbon chains. *J Phys Chem A*. 1998;102(20):3462-3469.
26. Khoo IC. *Liquid crystals*. Hoboken (NJ): John Wiley & Sons; 2022.
27. Runge E, Gross EKU. Density-functional theory for time-dependent systems. *Phys Rev Lett*. 1984;52(12):997-1000.
28. Evans R. The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. *Adv Phys*. 1979;28(2):143-200.
29. Luckhurst GR, Sluckin TJ. *Biaxial nematic liquid crystals*. Chichester: Wiley; 2015.
30. Barmatov EB, Barmatova MV, Kremer F, Shibaev VP. Phase state and orientational order in liquid-crystalline polymer blends stabilized by hydrogen bonds. *Polym Sci Ser A*. 2001;43(4):665-673.
31. Kumari S, Singh S. Effect of electric field on re-entrance transition in a binary mixture of liquid crystals. *Phase Transitions*. 2015;88(12):1225-1235.
32. Kitzerow HS. Polymer-dispersed and polymer-stabilized chiral liquid crystals. In: *Liquid crystals in complex geometries*. Boca Raton (FL): CRC Press; 1996. p. 187-220.
33. Gautam V, Chaudhary S, Kumar J, Singh D, Kumar D. Quantum mechanical analysis of halogen-based ionic liquid crystal $[C_{12}MIM \cdot X]$ ($X = Cl, Br$) molecules. *Mol Simul*. 2024;50(4):308-321.
34. de Jeu WH. *Physical properties of liquid crystalline materials*. New York: Gordon & Breach; 1980.
35. Vertogen G, de Jeu WH. *Thermotropic liquid crystals: fundamentals*. Berlin: Springer; 1988.
36. Michl J, Thulstrup EW. *Spectroscopy with polarized light*. Weinheim: VCH; 1986.
37. Allen MP, Wilson MR. Computer simulation of liquid crystals. *J Comput Aided Mol Des*. 1989;3(4):335-353.
38. Hussein MA, Abdel-Rahman MA, Asiri AM, Alamry KA, Aly KI. Review on liquid crystalline polyazomethine polymers: basics, syntheses and characterization. *Des Monomers Polym*. 2012;15(5):431-463.
39. Dwivedi A, Dhar R, Pandey MB, Das IML, Dabrowski R. Amplitude and phase fluctuation modes of a newly synthesized antiferroelectric liquid crystal material 4F6Bi. *J Mol Liq*. 2009;148(1):1-5.
40. de Jeu WH. Physical properties of liquid crystalline materials in relation to their applications. *Mol Cryst Liq Cryst*. 1981;63(1):83-109.
41. Carlescu I. Introductory chapter: liquid crystals. In: *Liquid crystals—self-organized soft functional materials for advanced applications*. London: IntechOpen; 2018.
42. Gray GW, Goodby JW. *Smectic liquid crystals: textures and structures*. London: Leonard Hill; 1984.
43. Lagerwall JPF. *Ferroelectric and antiferroelectric liquid crystals*. Weinheim: Wiley-VCH; 1999.